880022 :Data Mining for Business and Governance (CSAI/HAIT/DJ/NMD)

General info

Instruction language English
Type of Instruction Lectures and hands-on sessions (Lecture schedule)
Type of exams Two-weekly tests and final exam (Examination schedule)
Level:Master
Course load:6 ECTS credits
Registration:Enrollment before start lectures
Blackboard InfoLink to Blackboard (When you see 'Guest are not allowed in this course', please login at Blackboard itself)

Lecturer(s)


dr. W. Huijbers (coordinator (unit 1))
No photo available
dr. M. Atzm├╝ller (coordinator (unit 3))

C.D. Emmery MSc


Objectives

After the course the student will be able to:

 

1.         Explain the elementary principles of data mining and their application in different

2.         Navigate and reproduce common methods used in scientific work and understand key differences with other fields.

3.         Apply popular implementations of data mining algorithms and basic preparation of data.

4.         Recognize the potential and limitations of data and algorithms.

5.         Identify important components and tools in the data science ecosystem.


Contents

Data Science methods are becoming the main tools for acquiring information both in business context and in scientific research. The course offers a thorough introduction in the use of data mining for analysis of various domains. Upon completion of the course, students will have acquired the skills necessary to apply data mining to extract information from large data sets and transform it into an understandable structure. In addition, students will be familiarized with advanced topics, including deep learning, time series and graph analyses. The perspective of the course is application-oriented and serves to provide students with the knowledge and experience that is in line with the current demand for skilled data scientists. 


Specifics

Data Mining for Business and Governance will be accessible for all students (no technical background required). During the course, students will complete mandatory assignments in which they will train their basic data mining skills in the domain of social media and behaviour. The experiments and assignments will be performed with open-source data mining software (jupyter, pandas, and scikit-learn). There will be one midterm exam to ensure that students keep on track with the course contents. The course is completed with a written exam.

 This course is compulsory for students of the track Data Science: Business and Governance (2016-2017). Passing the course is a prerequisite for Master thesis/Data Science in Action in the DSBG track.


Compulsory Reading

  1. Research papers, see Blackboard.


Recommended Prerequisites

none


Required Prerequisites

none


Compulsory for


Recommended option for

(17-aug-2017)